\#delimit ;
set more off;
set linesize 79;
set mem 10M;
set matsize 800;
log using "C:\Users\Samuel R. Lucas\My Real Documents\000Haifa\coldco22.out", replace text ; use "C:\Users\Samuel R. Lucas\My Real Documents\000Haifalyitlong4.dta" ;

* adopath + /home/davis/hdir1/lucas/ado/stbplus ;
* This estimates a Lucas Berends Fucella Neo-Classical Education Transitions Model ;
set seed 123456789 ;
corr AGRI MANU ;
tabl AGRI MANU ;
heckprob COLLATTE MOMED POPED POPSEI EARNT000
SIBS BROKEN BLACK OTHERMIS
VOCAB ARITH READ GPA12 COLTRK12
BROKMISS POPEDMI MOMEDMI
SIBSMISS POPINCMI
TESTMISS GPA12MI TRAK12MI AGRI MANU, sel(HSGRDGED=MOMED POPED POPSEI EARNT000
SIBS BROKEN BLACK OTHERMIS
VOCAB ARITH READ GPA10 COLTRK10
BROKMISS POPEDMI MOMEDMI
SIBSMISS POPINCMI
TESTMISS GPA10MI TRAK10MI AGRI MANU) cluster(SCHL);
listcoef, std help ;
* calculates cross product matrix of selectionY ;
matrix accum hsgged01a=MOMED POPED POPSEI EARNT000
SIBS BROKEN BLACK OTHERMIS
VOCAB ARITH READ GPA10 COLTRK10
BROKMISS POPEDMI MOMEDMI
SIBSMISS POPINCMI
TESTMISS GPA10MI TRAK10MI MANU twoone,
noconstant deviation ;
* calculates variance covariance matrix of selectionY ;
matrix hsgged01b=(hsgged01a/1565);
* calculates cross product matrix of outcomeY;
matrix accum colatt01a=MOMED POPED POPSEI EARNT000
SIBS BROKEN BLACK OTHERMIS
VOCAB ARITH READ GPA12 COLTRK12
BROKMISS POPEDMI MOMEDMI
SIBSMISS POPINCMI
TESTMISS GPA12MI TRAK12MI AGRI MANU oneone if HSGRDGED==1, noconstant deviation ;
* calculates variance covariance matrix of outcomeY ;
matrix colatt01b=(colatt01a/1444);
/* AGRI MANU Unconstrained rho Model for all */ ;
* So, rho is estimated ;
* These two re-did the above for selectionY because of a change in the specification ;
matrix accum hsgged01c=MOMED POPED POPSEI EARNT000

SIBS BROKEN BLACK OTHERMIS

VOCAB ARITH READ GPA10 COLTRK10
BROKMISS POPEDMI MOMEDMI
SIBSMISS POPINCMI
TESTMISS GPA10MI TRAK10MI AGRI MANU twoone, noconstant deviation ;
matrix hsgged01d=(hsgged01c/1565);

* list the variance covariance matrix from the model ;
matrix list $\mathrm{e}(\mathrm{V})$;
* make the matrix of coefficients workable without destroying the saved results ;
matrix $\operatorname{MyunB}=\mathrm{e}(\mathrm{b})$;
* double check you have the coefficients you want ;
matrix list MyunB ;
* pull out the vector of coefficients for the outcomeY ;
matrix colattunb $=$ MyunB[1..1, 1..24];
* list to be sure you have the coefficients you want of outcomeY ;
matrix list colattunb ;
* pull out the vector of coefficients you want of selectionY ;
* be sure to leave rho out of this matrix ;
matrix hsggedunb=MyunB[1..1,25..48];
* list to check that you have the coefficients you want of selectionY ;
matrix list hsggedunb ;
* calculate the variance of outcomeY-star, the latent variable Y ;
matrix collyvar=(colattunb*colatt01b*colattunb') +1 ;
* calculate the variance of selectionY-star, the latent variable Y ;
matrix hsggyvar=(hsggedunb*hsgged01d*hsggedunb') + 1 ;
* list the scalars you now have ;
matrix list collyvar ;
matrix list hsggyvar ;
* now comes a Kludge. I tried and tried to automate this, but finally the desire to get something to work override my desire for elegance I run the model once, get this result, then write it in to the expression below ;
* This expression calculates the Y -standardized coefficients for outcome Y , which I then list to assure I have what I wanted ;
matrix MystdColB=(colattunb / (sqrt(1.8770845))) ;
matrix list MystdColB ;
* This expression calculates Y-standardized coefficients for selectionY, which I then list to assure I have what I wanted ;
matrix MystdHsgB=(hsggedunb / (sqrt(1.8077542))) ;
matrix list MystdHsgB ;
* I then pull the rho out of the coefficient matrix I earlier set aside ;
matrix Myrho=MyunB[1..1, 49..49];
* I list it to assure it is what I wanted ;
* You'll note I did not automate the limits I use on the matrices. I did not do that because I set the model up once, and estimated it on several different datasets with the same structure. So, I had little incentive to automate, but I might get around to doing that. If I do, I'll send it out. For now, it serves as a check to assure you are doing what you want. Yeah, it's a feature ;
matrix list Myrho ;
* The next to matrices calculate a difference between the standardized coefficients for selectionY and for outcomeY, using only the variables they have in common ;
matrix MysubB01=MystdHsgB[1..1,1..24];
matrix MystdDIFFU=MystdColB-MysubB01;
* I now collect the Y -standardized variables into one vector, and list it ;
matrix MyBeta=[MystdColB, MystdHsgB, Myrho];
matrix list MyBeta ;
matrix list MystdDIFFU ;
* This pulls the old estimated variance covariance matrix into something I can manipulate without over-writing it ;
matrix $\mathrm{MyV}=\mathrm{e}(\mathrm{V})$;
* The next commands adjust the variance covariance matrixes so I will be able to calculate appropriate standard errors ;
matrix TheirVVA=MyV[1..24, 1..24];
matrix TheirVVB $=\operatorname{MyV}[1 . .24,25 . .49]$;
matrix TheirVVC $=\mathrm{MyV}[25 . .49,1 . .24]$;
matrix TheirVVD $=\mathrm{MyV}[25 . .49,25 . .49]$;
matrix VA=TheirVVA/1.8770845;
matrix $\mathrm{VB}=$ TheirVVB $/((\operatorname{sqrt}(1.8770845)) *(\operatorname{sqrt}(1.8077542)))$;
matrix $\mathrm{VC}=$ TheirVVC/((sqrt(1.8770845)) $)(\operatorname{sqrt}(1.8077542)))$;
matrix VD=TheirVVD/1.8077542;
matrix VARMULT01=[VA, VB];
matrix VARMULT02 $=[\mathrm{VC}, \mathrm{VD}]$;
* This command puts the matrices in the proper order ;
matrix VARMULT=[VARMULT01 \VARMULT02];
matrix list VARMULT ;
matrix MyVCVBeta=VARMULT ;

> * desisam puts everything together, and reposts the results. Reposting allows
> me to use the test commands of stata to test for equality of coefficients across equations, within equations, and so forth;
/* Rescales variances and covariances from estimation */;
program desisam3, eclass ;
tempname vmatl ;
tempname bmatl ;
matrix `vmat1' = MyVCVBeta ; matrix `bmat1'=MyBeta;
ereturn repost $\mathrm{V}=$ 'vmat1';
ereturn repost $\mathrm{b}=$ 'bmat1' ;
end ;
desisam3;
test [COLLATTE] MOMED ;
test [COLLATTE] POPED ;
test [COLLATTE] POPSEI ;
test [COLLATTE] EARNT000 ;
test [COLLATTE] SIBS ;
test [COLLATTE] BROKEN ;
test [COLLATTE] BLACK ;
test [COLLATTE=HSGRDGED]: MOMED POPED POPSEI EARNT000;
test [COLLATTE=HSGRDGED]: MOMED POPED SIBS BROKEN;
test [COLLATTE=HSGRDGED]: MOMED POPED EARNT000 SIBS BROKEN;
test [COLLATTE=HSGRDGED]: MOMED POPED POPSEI EARNT000 SIBS BROKEN;
test [COLLATTE=HSGRDGED]: MOMED POPED POPSEI EARNT000 SIBS BROKEN
BLACK
OTHERMIS;

```
test [COLLATTE]MOMED = [HSGRDGED]MOMED ;
test [COLLATTE]POPED = [HSGRDGED]POPED ;
test [COLLATTE]POPSEI = [HSGRDGED]POPSEI ;
test [COLLATTE]EARNT000 = [HSGRDGED]EARNT000 ;
test [COLLATTE]SIBS = [HSGRDGED]SIBS ;
test [COLLATTE]BROKEN = [HSGRDGED]BROKEN ;
test [COLLATTE]BLACK = [HSGRDGED]BLACK ;
test [COLLATTE]OTHERMIS = [HSGRDGED]OTHERMIS ;
```

```
test [COLLATTE]VOCAB = [HSGRDGED]VOCAB ;
test [COLLATTE]ARITH = [HSGRDGED]ARITH ;
test [COLLATTE]READ = [HSGRDGED]READ ;
test [COLLATTE]GPA12 = [HSGRDGED]GPA10 ;
test [COLLATTE]COLTRK12 = [HSGRDGED]COLTRK10;
test [COLLATTE]AGRI [COLLATTE]MANU ;
test [COLLATTE]MANU ;
test [COLLATTE]AGRI ;
test [HSGRDGED]MOMED ;
test [HSGRDGED]POPED ;
test [HSGRDGED]POPSEI;
test [HSGRDGED]EARNT000;
test [HSGRDGED]SIBS ;
test [HSGRDGED]BROKEN ;
test [HSGRDGED]BLACK ;
test [HSGRDGED]OTHERMIS ;
test [HSGRDGED]VOCAB ;
test [HSGRDGED]ARITH ;
test [HSGRDGED]READ ;
test [HSGRDGED]GPA10;
test [HSGRDGED]COLTRK10;
test [COLLATTE]MOMED ;
test [COLLATTE]POPED ;
test [COLLATTE]POPSEI;
test [COLLATTE]EARNT000;
test [COLLATTE]SIBS;
test [COLLATTE]BROKEN ;
test [COLLATTE]BLACK;
test [COLLATTE]OTHERMIS ;
test [COLLATTE]VOCAB ;
test [COLLATTE]ARITH ;
test [COLLATTE]READ ;
test [COLLATTE]GPA12;
test [COLLATTE]COLTRK12;
```

* after using these names, I drop them all so I can use them again to estimate other models ;
matrix drop MyunB colattunb hsggedunb collyvar hsggyvar MystdColB MystdHsgB
Myrho MysubB01 MystdDIFFU MyBeta MyV TheirVVA TheirVVB
TheirVVC TheirVVD VA VB VC VD VARMULT01 VARMULT02 VARMULT MyVCVBeta
;
clear ;
exit ;

