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Averaging the proportions
transforming the average proportion

Estimation

I When using regress:
1. college = class + performance
2. college = class

I The direct effect is the effect of class in model 1.
I The total effect is the effect of class in model 2.
I The indirect effect is the total effect - direct effect.
I This won’t work when using logit
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Estimating counterfactual odds

As proposed by Buis (2008):
I The odds is probability

1−probability

I probability =

∑
i∈c1

Λ(αc2 + βc2xi)

Nc1

I c1 is the distribution of performance
I c2 is the logit curve

As proposed by Erikson and colleagues (2005):

I

∫ ∞
−∞

φ(µc1 , σc1)Λ(αc2 + βc2x)dx
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Descriptives

. table ocf57 if !missing(hsrankq, college) , ///
> contents(mean college mean hsrankq freq) format(%9.3g)

occupation of r father in
1957 mean(college) mean(hsrankq) Freq.

Unskilled .287 46.4 3,528
Farming .277 51.9 1,690
Skilled .38 50.6 868

White collar .54 54 1,868
Professional or executive .771 60.5 969
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The ldecomp package

ldecomp depvar
[

weight
] [

if
] [

in
]
, direct(varname)

indirect(varlist)
[
obspr predpr predodds rindirect

rdirect lor noor normal range(##) nip(#)

interactions
]
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Counterfactual proportions

. ldecomp college , direct(ocf57) indirect(hsrankq) predpr predodds lor rind

predicted and counterfactual proportions
association

distribution Unskilled Farming Skilled White col~r Professio~e

Unskilled .287 .251 .356 .492 .702
Farming .316 .277 .388 .527 .731
Skilled .309 .271 .38 .518 .723

White collar .329 .289 .402 .54 .74
Profession~e .365 .323 .441 .581 .771

I The odds is probability
1−probability

I The odds that a child from a unskilled worker enters
college is .287

1−.287 = .403
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Counterfactual odds

predicted and counterfactual odds
association

distribution Unskilled Farming Skilled White col~r Professio~e

Unskilled .403 .335 .553 .969 2.35
Farming .462 .383 .635 1.12 2.72
Skilled .447 .371 .613 1.07 2.61

White collar .49 .407 .672 1.17 2.84
Profession~e .574 .476 .789 1.38 3.36
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predicted and counterfactual odds
association

distribution Unskilled Farming Skilled White col~r Professio~e

Unskilled .403 .335 .553 .969 2.35
Farming .462 .383 .635 1.12 2.72
Skilled .447 .371 .613 1.07 2.61

White collar .49 .407 .672 1.17 2.84
Profession~e .574 .476 .789 1.38 3.36

Ohl

Oll︸︷︷︸
indirect

× Ohh

Ohl︸︷︷︸
direct

=
Ohh

Oll︸︷︷︸
total
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Counterfactual odds
predicted and counterfactual odds

association
distribution Unskilled Farming Skilled White col~r Professio~e

Unskilled .403 .335 .553 .969 2.35
Farming .462 .383 .635 1.12 2.72
Skilled .447 .371 .613 1.07 2.61

White collar .49 .407 .672 1.17 2.84
Profession~e .574 .476 .789 1.38 3.36

Ohl

Oll︸︷︷︸
indirect

× Ohh

Ohl︸︷︷︸
direct

=
Ohh

Oll︸︷︷︸
total

.574

.403︸ ︷︷ ︸
indirect

× 3.36
.574︸ ︷︷ ︸
direct

=
3.36
.403︸ ︷︷ ︸
total
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Counterfactual odds

predicted and counterfactual odds
association

distribution Unskilled Farming Skilled White col~r Professio~e

Unskilled .403 .335 .553 .969 2.35
Farming .462 .383 .635 1.12 2.72
Skilled .447 .371 .613 1.07 2.61

White collar .49 .407 .672 1.17 2.84
Profession~e .574 .476 .789 1.38 3.36

1.43︸︷︷︸
indirect

×5.86︸︷︷︸
direct

= 8.35︸︷︷︸
total
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Decomposition of odds ratios
decomposition of odds ratios
(method 1)

indirect direct total
[i,j]/[j,j] [i,i]/[i,j] [i,i]/[j,j]

2/1 1.15 .83 .951
3/1 1.11 1.37 1.52
4/1 1.22 2.4 2.92
5/1 1.43 5.86 8.35
3/2 .97 1.65 1.6
4/2 1.06 2.89 3.07
5/2 1.24 7.06 8.79
4/3 1.1 1.75 1.91
5/3 1.29 4.27 5.49
5/4 1.18 2.43 2.86

(method 2)
indirect direct total
[i,i]/[j,i] [j,i]/[j,j] [i,i]/[j,j]

2/1 1.14 .831 .951
3/1 1.11 1.37 1.52
4/1 1.21 2.4 2.92
5/1 1.43 5.85 8.35
3/2 .966 1.66 1.6
4/2 1.05 2.91 3.07
5/2 1.24 7.1 8.79
4/3 1.09 1.75 1.91
5/3 1.29 4.26 5.49
5/4 1.18 2.42 2.86

Column names:
i refers to the first category in the row name
j refers to the second category in the row name
first number in pair refers to the distribution
second number in pair refers to the association

value labels
1 Unskilled
2 Farming
3 Skilled
4 White collar
5 Professional or

executive

Maarten L. Buis Direct and indirect effects in a logit model



The aim
The problem
The solution

example

Decomposition of log odds ratios
decomposition of log odds ratios
(method 1)

indirect direct total
[i,j]/[j,j] [i,i]/[i,j] [i,i]/[j,j]

2/1 .136 -.187 -.0504
3/1 .104 .316 .421
4/1 .196 .874 1.07
5/1 .354 1.77 2.12
3/2 -.0308 .502 .471
4/2 .0611 1.06 1.12
5/2 .218 1.95 2.17
4/3 .0911 .559 .65
5/3 .251 1.45 1.7
5/4 .164 .888 1.05

(method 2)
indirect direct total
[i,i]/[j,i] [j,i]/[j,j] [i,i]/[j,j]

2/1 .135 -.186 -.0504
3/1 .104 .317 .421
4/1 .193 .877 1.07
5/1 .357 1.77 2.12
3/2 -.0342 .505 .471
4/2 .0516 1.07 1.12
5/2 .213 1.96 2.17
4/3 .089 .561 .65
5/3 .253 1.45 1.7
5/4 .169 .884 1.05

Column names:
i refers to the first category in the row name
j refers to the second category in the row name
first number in pair refers to the distribution
second number in pair refers to the association

value labels
1 Unskilled
2 Farming
3 Skilled
4 White collar
5 Professional or

executive
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Relative importance of indirect effect

relative importance of indirect effect
method 1 method 2 average

2/1 -2.7 -2.68 -2.69
3/1 .248 .247 .248
4/1 .183 .18 .182
5/1 .167 .168 .168
3/2 -.0654 -.0725 -.069
4/2 .0545 .0461 .0503
5/2 .101 .098 .0993
4/3 .14 .137 .139
5/3 .148 .149 .148
5/4 .156 .16 .158

value labels
1 Unskilled
2 Farming
3 Skilled
4 White collar
5 Professional or

executive
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Discussion

This is “an area of active research”

I The need to take the average indirect effect is less than
elegant.

I This procedure only provides a point estimate, and no tests
or confidence intervals.

I How does it relate to the alternative method proposed by
Fairlie (2005) and implemented by Ben Jann as the
fairlie package?
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