

Usefulness and estimation of proportionality constraints The propensing package

Maarten L. Buis

Department of Social Research Methodology Vrije Universiteit Amsterdam http://home.fsw.vu.nl/m.buis/

Maarten L. Buis Usefulness and estimation of proportionality constraints

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline

usefulness

proportionality constraint a latent variable scale for a categorical variable

estimation

・ 回 ト ・ ヨ ト ・ ヨ ト

proportionality constraint a latent variable scale for a categorical variable

Outline

usefulness

proportionality constraint a latent variable scale for a categorical variable

estimation

ヘロト ヘワト ヘビト ヘビト

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts,

イロト イポト イヨト イヨト

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts, but the relative contribution of the father and the mother remains constant.

・ 回 ト ・ ヨ ト ・ ヨ ト

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts, but the relative contribution of the father and the mother remains constant.

$$ed = \beta_0 + \beta_1 coh + (1 + \lambda_1 coh)(\gamma_1 pasei + \gamma_2 masei)$$

→ E > < E >

æ

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts, but the relative contribution of the father and the mother remains constant.

$$ed = \beta_0 + \beta_1 coh + (1 + \lambda_1 0)(\gamma_1 pasei + \gamma_2 masei)$$

→ E > < E >

æ

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts, but the relative contribution of the father and the mother remains constant.

$$ed = \beta_0 + \beta_1 coh + (1 + \lambda_1 0)(\gamma_1 pasei + \gamma_2 masei)$$

$$ed = \beta_0 + \beta_1 coh + \gamma_1 pasei + \gamma_2 masei$$

→ Ξ → < Ξ →</p>

æ

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts, but the relative contribution of the father and the mother remains constant.

$$ed = \beta_0 + \beta_1 coh + (1 + \lambda_1 1)(\gamma_1 pasei + \gamma_2 masei)$$

→ E > < E >

æ

proportionality constraint a latent variable scale for a categorical variable

example

Hypothesis:

Effect of father's and mother's socioeconomic status on child's education can change over cohorts, but the relative contribution of the father and the mother remains constant.

$$ed = \beta_0 + \beta_1 coh + (1 + \lambda_1 1)(\gamma_1 pasei + \gamma_2 masei)$$

 $ed = \beta_0 + \beta_1 coh + (1 + \lambda_1)\gamma_1 pasei + (1 + \lambda_1)\gamma_2 masei)$

ヘロン 人間 とくほ とくほ とう

E DQC

proportionality constraint a latent variable scale for a categorical variable

empirical example

 7 surveys held between 1994 and 2006 in the USA from the General Social Survey (GSS) containing data on 2,500 white male.

イロト イポト イヨト イヨト

proportionality constraint a latent variable scale for a categorical variable

empirical example

- 7 surveys held between 1994 and 2006 in the USA from the General Social Survey (GSS) containing data on 2,500 white male.
- Variable degree: educational attainment in pseudo years

イロト イ理ト イヨト イヨト

proportionality constraint a latent variable scale for a categorical variable

empirical example

- 7 surveys held between 1994 and 2006 in the USA from the General Social Survey (GSS) containing data on 2,500 white male.
- Variable degree: educational attainment in pseudo years
- Variable byr: cohort centered in 1940 and measuring time in decades, ranges between 1929 and 1979.

- 4 間 ト 4 ヨ ト 4 ヨ ト

proportionality constraint a latent variable scale for a categorical variable

empirical example

- 7 surveys held between 1994 and 2006 in the USA from the General Social Survey (GSS) containing data on 2,500 white male.
- Variable degree: educational attainment in pseudo years
- Variable byr: cohort centered in 1940 and measuring time in decades, ranges between 1929 and 1979.
- Variables pasei and masei: Father's and mother's occupational status, ranges between 0 and 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

proportionality constraint a latent variable scale for a categorical variable

example output

. propensreg Constraint: []	degree byr, Lambda]_cons	lambda(byr) = 1	constrai	ned(mase	i pasei) lcons	
degree	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
unconstrai~d byr _cons	.0392033	.1418648	0.28	0.782	2388465 9.699157	.3172531 10.78205
constrained masei pasei	3.363018 3.948723	.3688164 .3972388	9.12 9.94	0.000	2.640152 3.170149	4.085885 4.727296
lambda byr _cons	0323712	.037854	-0.86	0.392	1065637	.0418212
ln_sigma _cons	.837853	.014199	59.01	0.000	.8100234	.8656826
LR test vs. unconstrained model: chi2(1) =				0.04	Prob > chi2 =	0.849

Maarten L. Buis Usefulness and estimation of proportionality constraints

<ロ> (日) (日) (日) (日) (日)

proportionality constraint a latent variable scale for a categorical variable

alternative way of looking

 $ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) (\gamma_1 pasei + \gamma_2 masei)$

latent family sei

イロト イポト イヨト イヨト

ъ

Maarten L. Buis Usefulness and estimation of proportionality constraints

proportionality constraint a latent variable scale for a categorical variable

alternative way of looking

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{lotent} \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{lotent}$$

latent family sei

イロト イポト イヨト イヨト

ъ

Need to identify the latent variable by fixing the origin and the scale.

proportionality constraint a latent variable scale for a categorical variable

alternative way of looking

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum.

ヘロン 人間 とくほ とくほ とう

E DQC

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum. latent family sei = *γ*₁*pasei* + *γ*₂*masei*

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum. latent family sei = γ₁0 + γ₂0 = 0

ヘロン 人間 とくほ とくほ とう

E DQC

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum.
- If the maximum value of pasei and masei is 1, and

イロト イポト イヨト イヨト

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{transition}}$$

latent family sei

ヘロト ヘアト ヘビト ヘビト

э.

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum.
- If the maximum value of *pasei* and *masei* is 1, and their parameters are constrained to sum to 1,

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum.
- If the maximum value of pasei and masei is 1, and their parameters are constrained to sum to 1, then the unit is fixed to the distance between both variables at minimum and both variables at maximum.

ヘロン 人間 とくほ とくほ とう

E DQC

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum.
- If the maximum value of *pasei* and *masei* is 1, and their parameters are constrained to sum to 1, then the unit is fixed to the distance between both variables at minimum and both variables at maximum.

latent family sei = $\gamma_1 pasei + \gamma_2 masei$

ヘロン 人間 とくほ とくほ とう

E DQC

$$ed = \beta_0 + \beta_1 coh + (\lambda_0 + \lambda_1 coh) \underbrace{(\gamma_1 pasei + \gamma_2 masei)}_{\text{latent family sei}}$$

- Need to identify the latent variable by fixing the origin and the scale.
- If the minimum value of *pasei* and *masei* is 0 then the origin is fixed to when both variables are minimum.
- If the maximum value of *pasei* and *masei* is 1, and their parameters are constrained to sum to 1, then the unit is fixed to the distance between both variables at minimum and both variables at maximum.

latent family sei = $\gamma_1 \mathbf{1} + \gamma_2 \mathbf{1} = \mathbf{1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

proportionality constraint a latent variable scale for a categorical variable

example output

. propensreg Constraint: [degree byr, l constrained]m	lambda(byr) (nasei + [con:	constrain strained]	ed(masei pasei =	pasei) unit(m 1	asei pasei)
degree	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
unconstrai~d						
byr _cons	.0392033 10.2406	.1418647	0.28 37.07	0.782	2388464 9.699158	.3172529 10.78205
constrained	1					
masei	.4599477	.0323745	14.21	0.000	.3964949	.5234005
pasei	.5400523	.0323745	16.68	0.000	.4765995	.6035051
lambda						
byr	2366899	.2935214	-0.81	0.420	8119814	.3386015
_cons	7.311741	.601956	12.15	0.000	6.131929	8.491553
ln_sigma						
	.837853	.014199	59.01	0.000	.8100234	.8656826
LR test vs. u	nconstrained	model: chi2	(1) =	0.04	Prob > chi2 =	0.849

Maarten L. Buis Usefulness and estimation of proportionality constraints

ヘロト 人間 とくほとく ほとう

proportionality constraint a latent variable scale for a categorical variable

scale for a categorical variable

Example

- Differences in the effect of education in 5 dummies on occupational status between white and black US men:
 - < highschool (reference)</p>
 - highschool (hs)
 - some college (sc)
 - college (c)
 - graduate (g)

< 🗇 🕨

★ 문 ► ★ 문 ►

proportionality constraint a latent variable scale for a categorical variable

scale for a categorical variable

Example

Differences in the effect of education in 5 dummies on occupational status between white and black US men:

- < highschool (reference)</p>
- highschool (hs)
- some college (sc)
- college (c)
- graduate (g)

 $isei = \beta_0 + (\lambda_0 + \lambda_1 black)(\gamma_1 hs + \gamma_2 sc + \gamma_3 c + \gamma_4 g)$

イロト イ押ト イヨト イヨトー

э.

scale for a categorical variable

Example

Differences in the effect of education in 5 dummies on occupational status between white and black US men:

- < highschool (reference)</p>
- highschool (hs)
- some college (sc)
- college (c)
- graduate (g)

 $isei = \beta_0 + (\lambda_0 + \lambda_1 black)(\gamma_1 hs + \gamma_2 sc + \gamma_3 c + 1g)$

イロト イ押ト イヨト イヨトー

э.

scale for a categorical variable

Example

- Differences in the effect of education in 5 dummies on occupational status between white and black US men:
 - < highschool (reference)</p>
 - highschool (hs)
 - some college (sc)
 - ► college (c)
 - graduate (g)

 $isei = \beta_0 + (\lambda_0 + \lambda_1 black)(\gamma_1 hs + \gamma_2 sc + \gamma_3 c + 1g)$

 γ_1 , γ_2 , and γ_3 now measure the position of highschool, some college, and college education, relative to less than highschool (0) and graduate (1).

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

proportionality constraint a latent variable scale for a categorical variable

example output

. propensreg s Constraint: [c	ei black, lar constrained]g	mbda(black) = 1	constrai	ned(hs s	ccg) unit(g))
sei	Coef.	Std. Err.	Z	₽> z	[95% Conf	. Interval]
unconstrai~d						
black	042371	.009563	-4.43	0.000	0611141	0236279
_cons	.3638307	.0076114	47.80	0.000	.3489126	.3787488
constrained						
hs	.2226429	.016662	13.36	0.000	.1899861	.2552997
sc	.4411229	.0206904	21.32	0.000	.4005705	.4816753
c	.7185653	.01676	42.87	0.000	.6857163	.7514144
gl	1	•	•	•	•	•
lambda						
black	.0458751	.0227816	2.01	0.044	.0012239	.0905263
_cons	.38541	.0099432	38.76	0.000	.3659217	.4048983
ln sigma						
_cons	-1.859163	.0090043	-206.48	0.000	-1.876811	-1.841515
LR test vs. unconstrained model: chi2(3) =				5.42	Prob > chi2 =	= 0.144

Maarten L. Buis Usefulness and estimation of proportionality constraints

ヘロト 人間 とくほとく ほとう

proportionality constraint a latent variable scale for a categorical variable

Scaling of education

Maarten L. Buis Usefulness and estimation of proportionality constraints

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ヨト・モラト

proportionality constraint a latent variable scale for a categorical variable

Scaling of education

Maarten L. Buis Usefulness and estimation of proportionality constraints

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ヨト・モラト

Outline

usefulness

proportionality constraint a latent variable scale for a categorical variable

estimation

・ロト ・四ト ・ヨト ・ヨト

EM-algorithm for starting values

$$y = \beta_0 + \beta_1 x_1 + (\lambda_0 + \lambda_1 x_1)(\gamma_1 z_1 + \gamma_2 z_2)$$

Maarten L. Buis Usefulness and estimation of proportionality constraints

(신문) (문)

< 🗇 🕨

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + (\lambda_0 + \lambda_1 \mathbf{x}_1)(\gamma_1 \mathbf{z}_1 + \gamma_2 \mathbf{z}_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable.

・ 同 ト ・ 臣 ト ・ 臣 ト …

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + (\lambda_0 + \lambda_1 \mathbf{x}_1)(\gamma_1 \mathbf{z}_1 + \gamma_2 \mathbf{z}_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \lambda_0 latent + \lambda_1 x_1 latent$

1

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + (\lambda_0 + \lambda_1 \mathbf{x}_1)(\gamma_1 \mathbf{z}_1 + \gamma_2 \mathbf{z}_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \lambda_0 latent + \lambda_1 x_1 latent$
 - 2. Estimate β and λ using regress

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + (\lambda_0 + \lambda_1 \mathbf{x}_1)(\gamma_1 \mathbf{z}_1 + \gamma_2 \mathbf{z}_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \lambda_0 latent + \lambda_1 x_1 latent$
 - **2.** Estimate β and λ using regress
 - 3. Given current estimates of λ , create a new variable containing the effect of the latent variable.

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + (\lambda_0 + \lambda_1 \mathbf{x}_1)(\gamma_1 \mathbf{z}_1 + \gamma_2 \mathbf{z}_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \lambda_0 latent + \lambda_1 x_1 latent$
 - **2.** Estimate β and λ using regress
 - 3. Given current estimates of λ , create a new variable containing the effect of the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \gamma_1 \text{effect} z_1 + \gamma_2 \text{effect} z_2)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

- $y = \beta_0 + \beta_1 x_1 + (\lambda_0 + \lambda_1 x_1)(\gamma_1 z_1 + \gamma_2 z_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \lambda_0 latent + \lambda_1 x_1 latent$
 - **2.** Estimate β and λ using regress
 - 3. Given current estimates of λ , create a new variable containing the effect of the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \gamma_1 \text{ effect} z_1 + \gamma_2 \text{ effect} z_2)$
 - 4. Estimate β and γ using cnsreg imposing the constraint specified in the unit option.

ヘロン 人間 とくほ とくほ とう

1

- $y = \beta_0 + \beta_1 x_1 + (\lambda_0 + \lambda_1 x_1)(\gamma_1 z_1 + \gamma_2 z_2)$
 - 1. Given current estimates/starting value for γ , create a new variable containing the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \lambda_0 latent + \lambda_1 x_1 latent$
 - **2.** Estimate β and λ using regress
 - 3. Given current estimates of λ , create a new variable containing the effect of the latent variable. This simplifies the problem to: $y = \beta_0 + \beta_1 x_1 + \gamma_1 \text{ effect} z_1 + \gamma_2 \text{ effect} z_2)$
 - 4. Estimate β and γ using cnsreg imposing the constraint specified in the unit option.
 - 5. Repeat steps 1-4 till convergence.

ヘロン 人間 とくほ とくほ とう

э.

speed and standard errors

Maarten L. Buis Usefulness and estimation of proportionality constraints

★ E → ★ E →

< 🗇

speed and standard errors

 To speed up convergence every 5th iteration will consist of two ml iterations for the complete model.

★ E → ★ E →

speed and standard errors

- To speed up convergence every 5th iteration will consist of two ml iterations for the complete model.
- Once the EM has converged, these estimates are fed into ml for the complete model to get the variance covariance matrix.

→ Ξ → < Ξ →</p>

example iteration log

improving	starting values		
iteration	unconstrained part only	constrained b part only	full model
1 2 3 4	2712.7047 2716.4376 2716.6246 2716.674	2716.1367 2716.5608 2716.6572 2716.6825	
5	two iterations	from full mode	2716.6914
6	2716.6914	2716.6914	

estimating full model

Iteration	0:	log	likelihood	=	2716.6899
Iteration	1:	log	likelihood	=	2716.6914
Iteration	2:	log	likelihood	=	2716.6914

イロン イロン イヨン イヨン

A proportionality constraint means that the effects of a group of variables changes, but that the relative differences in the sizes of the effect remain constant.

★ 문 ► ★ 문 ►

- A proportionality constraint means that the effects of a group of variables changes, but that the relative differences in the sizes of the effect remain constant.
- This can be of interest in it's own right, e.g. the effect on child's education of father's and mother's status change, but the relative contribution of each parent can remain constant.

★ 문 ► ★ 문 ►

- A proportionality constraint means that the effects of a group of variables changes, but that the relative differences in the sizes of the effect remain constant.
- This can be of interest in it's own right, e.g. the effect on child's education of father's and mother's status change, but the relative contribution of each parent can remain constant.
- It can also be interpreted in terms of a latent variable, e.g. father's and mother's status both measure family status.

伺 とく ヨ とく ヨ と

- A proportionality constraint means that the effects of a group of variables changes, but that the relative differences in the sizes of the effect remain constant.
- This can be of interest in it's own right, e.g. the effect on child's education of father's and mother's status change, but the relative contribution of each parent can remain constant.
- It can also be interpreted in terms of a latent variable, e.g. father's and mother's status both measure family status.
- Standard ml can have a hard time converging, so starting values are created using a EM algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト …