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example

Hypothesis:
Effect of father’s and mother’s socioeconomic status on child’s
education can change over cohorts,

but the relative contribution
of the father and the mother remains constant.
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example

Hypothesis:
Effect of father’s and mother’s socioeconomic status on child’s
education can change over cohorts, but the relative contribution
of the father and the mother remains constant.

ed = β0 + β1coh + (1 + λ1coh)(γ1pasei + γ2masei)
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example

Hypothesis:
Effect of father’s and mother’s socioeconomic status on child’s
education can change over cohorts, but the relative contribution
of the father and the mother remains constant.

ed = β0 + β1coh + (1 + λ10)(γ1pasei + γ2masei)
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Hypothesis:
Effect of father’s and mother’s socioeconomic status on child’s
education can change over cohorts, but the relative contribution
of the father and the mother remains constant.

ed = β0 + β1coh + (1 + λ10)(γ1pasei + γ2masei)

ed = β0 + β1coh + γ1pasei + γ2masei
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Hypothesis:
Effect of father’s and mother’s socioeconomic status on child’s
education can change over cohorts, but the relative contribution
of the father and the mother remains constant.

ed = β0 + β1coh + (1 + λ11)(γ1pasei + γ2masei)
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example

Hypothesis:
Effect of father’s and mother’s socioeconomic status on child’s
education can change over cohorts, but the relative contribution
of the father and the mother remains constant.

ed = β0 + β1coh + (1 + λ11)(γ1pasei + γ2masei)

ed = β0 + β1coh + (1 + λ1)γ1pasei + (1 + λ1)γ2masei)
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empirical example

I 7 surveys held between 1994 and 2006 in the USA from
the General Social Survey (GSS) containing data on 2,500
white male.

I Variable degree: educational attainment in pseudo years
I Variable byr : cohort centered in 1940 and measuring time

in decades, ranges between 1929 and 1979.
I Variables pasei and masei : Father’s and mother’s

occupational status, ranges between 0 and 1.
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example output

. propcnsreg degree byr, lambda(byr) constrained(masei pasei) lcons
Constraint: [lambda]_cons = 1
------------------------------------------------------------------------------

degree | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
unconstrai~d |

byr | .0392033 .1418648 0.28 0.782 -.2388465 .3172531
_cons | 10.2406 .2762536 37.07 0.000 9.699157 10.78205

-------------+----------------------------------------------------------------
constrained |

masei | 3.363018 .3688164 9.12 0.000 2.640152 4.085885
pasei | 3.948723 .3972388 9.94 0.000 3.170149 4.727296

-------------+----------------------------------------------------------------
lambda |

byr | -.0323712 .037854 -0.86 0.392 -.1065637 .0418212
_cons | 1 . . . . .

-------------+----------------------------------------------------------------
ln_sigma |

_cons | .837853 .014199 59.01 0.000 .8100234 .8656826
------------------------------------------------------------------------------
LR test vs. unconstrained model: chi2(1) = 0.04 Prob > chi2 = 0.849
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.
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ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.
latent family sei = γ1pasei + γ2masei
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.
latent family sei = γ10 + γ20 = 0
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.

I If the maximum value of pasei and masei is 1, and
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.

I If the maximum value of pasei and masei is 1, and their
parameters are constrained to sum to 1,
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.

I If the maximum value of pasei and masei is 1, and their
parameters are constrained to sum to 1, then the unit is
fixed to the distance between both variables at minimum
and both variables at maximum.
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.

I If the maximum value of pasei and masei is 1, and their
parameters are constrained to sum to 1, then the unit is
fixed to the distance between both variables at minimum
and both variables at maximum.
latent family sei = γ1pasei + γ2masei
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alternative way of looking

ed = β0 + β1coh + (λ0 + λ1coh) (γ1pasei + γ2masei)︸ ︷︷ ︸
latent family sei

I Need to identify the latent variable by fixing the origin and
the scale.

I If the minimum value of pasei and masei is 0 then the
origin is fixed to when both variables are minimum.

I If the maximum value of pasei and masei is 1, and their
parameters are constrained to sum to 1, then the unit is
fixed to the distance between both variables at minimum
and both variables at maximum.
latent family sei = γ11 + γ21 = 1
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example output

. propcnsreg degree byr, lambda(byr) constrained(masei pasei) unit(masei pasei)
Constraint: [constrained]masei + [constrained]pasei = 1
------------------------------------------------------------------------------

degree | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
unconstrai~d |

byr | .0392033 .1418647 0.28 0.782 -.2388464 .3172529
_cons | 10.2406 .2762534 37.07 0.000 9.699158 10.78205

-------------+----------------------------------------------------------------
constrained |

masei | .4599477 .0323745 14.21 0.000 .3964949 .5234005
pasei | .5400523 .0323745 16.68 0.000 .4765995 .6035051

-------------+----------------------------------------------------------------
lambda |

byr | -.2366899 .2935214 -0.81 0.420 -.8119814 .3386015
_cons | 7.311741 .601956 12.15 0.000 6.131929 8.491553

-------------+----------------------------------------------------------------
ln_sigma |

_cons | .837853 .014199 59.01 0.000 .8100234 .8656826
------------------------------------------------------------------------------
LR test vs. unconstrained model: chi2(1) = 0.04 Prob > chi2 = 0.849
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scale for a categorical variable

Example
I Differences in the effect of education in 5 dummies on

occupational status between white and black US men:
I < highschool (reference)
I highschool (hs)
I some college (sc)
I college (c)
I graduate (g)
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scale for a categorical variable

Example
I Differences in the effect of education in 5 dummies on

occupational status between white and black US men:
I < highschool (reference)
I highschool (hs)
I some college (sc)
I college (c)
I graduate (g)

isei = β0 + (λ0 + λ1black)(γ1hs + γ2sc + γ3c + γ4g)
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Example
I Differences in the effect of education in 5 dummies on

occupational status between white and black US men:
I < highschool (reference)
I highschool (hs)
I some college (sc)
I college (c)
I graduate (g)

isei = β0 + (λ0 + λ1black)(γ1hs + γ2sc + γ3c + 1g)
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scale for a categorical variable

Example
I Differences in the effect of education in 5 dummies on

occupational status between white and black US men:
I < highschool (reference)
I highschool (hs)
I some college (sc)
I college (c)
I graduate (g)

isei = β0 + (λ0 + λ1black)(γ1hs + γ2sc + γ3c + 1g)

γ1, γ2, and γ3 now measure the position of highschool, some
college, and college education, relative to less than highschool
(0) and graduate (1).
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example output

. propcnsreg sei black, lambda(black) constrained(hs sc c g) unit(g)
Constraint: [constrained]g = 1
------------------------------------------------------------------------------

sei | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
unconstrai~d |

black | -.042371 .009563 -4.43 0.000 -.0611141 -.0236279
_cons | .3638307 .0076114 47.80 0.000 .3489126 .3787488

-------------+----------------------------------------------------------------
constrained |

hs | .2226429 .016662 13.36 0.000 .1899861 .2552997
sc | .4411229 .0206904 21.32 0.000 .4005705 .4816753
c | .7185653 .01676 42.87 0.000 .6857163 .7514144
g | 1 . . . . .

-------------+----------------------------------------------------------------
lambda |

black | .0458751 .0227816 2.01 0.044 .0012239 .0905263
_cons | .38541 .0099432 38.76 0.000 .3659217 .4048983

-------------+----------------------------------------------------------------
ln_sigma |

_cons | -1.859163 .0090043 -206.48 0.000 -1.876811 -1.841515
------------------------------------------------------------------------------
LR test vs. unconstrained model: chi2(3) = 5.42 Prob > chi2 = 0.144
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Scaling of education

estimated

pseudo
years

9 12 14 16 18

scale in pseudo years

0 .25 .5 .75 1

estimated scale

graduate
bachelor
junior college
highschool
< highschool
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EM-algorithm for starting values

y = β0 + β1x1 + (λ0 + λ1x1)(γ1z1 + γ2z2)

1. Given current estimates/starting value for γ, create a new
variable containing the latent variable. This simplifies the
problem to: y = β0 + β1x1 + λ0latent + λ1x1latent

2. Estimate β and λ using regress

3. Given current estimates of λ, create a new variable
containing the effect of the latent variable. This simplifies
the problem to: y = β0 + β1x1 + γ1effectz1 + γ2effectz2)

4. Estimate β and γ using cnsreg imposing the constraint
specified in the unit option.

5. Repeat steps 1-4 till convergence.
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y = β0 + β1x1 + (λ0 + λ1x1)(γ1z1 + γ2z2)

1. Given current estimates/starting value for γ, create a new
variable containing the latent variable. This simplifies the
problem to: y = β0 + β1x1 + λ0latent + λ1x1latent

2. Estimate β and λ using regress

3. Given current estimates of λ, create a new variable
containing the effect of the latent variable. This simplifies
the problem to: y = β0 + β1x1 + γ1effectz1 + γ2effectz2)

4. Estimate β and γ using cnsreg imposing the constraint
specified in the unit option.

5. Repeat steps 1-4 till convergence.
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speed and standard errors

I To speed up convergence every 5th iteration will consist of
two ml iterations for the complete model.

I Once the EM has converged, these estimates are fed into
ml for the complete model to get the variance covariance
matrix.
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I Once the EM has converged, these estimates are fed into
ml for the complete model to get the variance covariance
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example iteration log

improving starting values
------------------------------------------------------
iteration unconstrained constrained full model

part only part only
------------------------------------------------------
1 2712.7047 2716.1367
2 2716.4376 2716.5608
3 2716.6246 2716.6572
4 2716.674 2716.6825
------------------------------------------------------
5 two iterations from full model

2716.6914
------------------------------------------------------
6 2716.6914 2716.6914
------------------------------------------------------

estimating full model

Iteration 0: log likelihood = 2716.6899
Iteration 1: log likelihood = 2716.6914
Iteration 2: log likelihood = 2716.6914
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Conclusion

I A proportionality constraint means that the effects of a
group of variables changes, but that the relative differences
in the sizes of the effect remain constant.

I This can be of interest in it’s own right, e.g. the effect on
child’s education of father’s and mother’s status change,
but the relative contribution of each parent can remain
constant.

I It can also be interpreted in terms of a latent variable, e.g.
father’s and mother’s status both measure family status.

I Standard ml can have a hard time converging, so starting
values are created using a EM algorithm.
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