
The Stata Journal (2014) 14, Number 1, pp. 1–2

Stata tip #: Certifying subroutines
Maarten L. Buis
Wissenschaftszentrum Berlin für Sozialforschung (WZB)
Berlin, Germany
maarten.buis@wzb.eu

When writing your own program in Stata it is good practice and useful to create
(and run) a certification script. A certification script is nothing other than a .do file
that runs your program and compares the results with either some known to be true
result or results from a previous run. Gould (2001) It is also useful and good practice
to split-up your program into smaller subroutines, and you can store these subroutines
in the same .ado file. These subroutines will only be visible to other programs defined
within the same .ado file; the only program that is visible to all other programs in Stata
will be the first program defined in an .ado file. This can be useful for subroutines that
only make sense within the context of the main program. For example, one may want
to delegate the parsing of some complicated syntax element to a subroutine. Moreover,
putting a subroutine inside the .ado file of the main program protects users against
accidentally running that subroutine. This can be important when, for example, the
subroutine changes the data and the main program has various safeguards in place to
ensure that this will not corrupt the user’s data.

Sometimes it is helpful to certify some of the subroutines in isolation. How would
one do that if the subroutines are not visible outside the .ado file? One could copy the
subroutine and store it in its own file, thus making the subroutine globally visible. As
mentioned above, there can be good reasons why one would not want the subroutine to
be globally visible in the final program.

Another solution is to [R] do or [R] run the .ado file. This treats the .ado file as
a regular .do file, which in this case only defines a set of programs. So after doing or
running an .ado file all its subroutines will also be available. Now one can certify the
subroutines from the file that will be released to the general public without having to
copy and paste parts out and into that file. This trick can also be useful when debugging
a subroutine.

Consider the example .ado file below:

*! version 1.0.0 26Feb2014 MLB
program define mainprog
version 13
args input
subprog `input´
di `"`s(output)´"´
end

program define subprog, sclass
version 13
args input
sreturn local output `"do something smart with "`input´""´
end

c© 2014 StataCorp LP st0001



2 Stata tip #

If you store this file where Stata can see it (see [P] sysdir) or if you changed the
working directory to where this .ado file is stored (see [D] cd), the command mainprog

works directly, but if you try to call subprog Stata will return an error.

. clear all

. mainprog "this"
do something smart with "this"

. subprog "this"
unrecognized command: subprog
r(199);

We can look at the names of the programs stored in memory using [P] program
dir, and we see that subprog exists but only as part of the mainprog command.

. program dir
ado 232 mainprog.subprog
ado 213 mainprog
(output omitted )

If we run this .ado file first then we can directly access both mainprog and subprog.

. clear all

. run mainprog.ado

. mainprog "this"
do something smart with "this"

. subprog "this"

. di `"`s(output)´"´
do something smart with "this"

. program dir
232 subprog
213 mainprog

(output omitted )

Reference
Gould, W. 2001. Statistical software certification. Stata Journal 1(1): 29–50.


	Stata tip #: Certifying subroutinesto.44em.M. L. Buis

